Query & search registries

This guide walks through all the ways of finding metadata records in LaminDB registries.

# !pip install lamindb
!lamin init --storage ./test-registries
Hide code cell output
→ connected lamindb: testuser1/test-registries

We’ll need some toy data.

import lamindb as ln

# create toy data
ln.Artifact(ln.core.datasets.file_jpg_paradisi05(), description="My image").save()
ln.Artifact.from_df(ln.core.datasets.df_iris(), description="The iris collection").save()
ln.Artifact(ln.core.datasets.file_fastq(), description="My fastq").save()

# see the content of the artifact registry
ln.Artifact.df()
Hide code cell output
→ connected lamindb: testuser1/test-registries
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
! no run & transform got linked, call `ln.track()` & re-run
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1

Look up metadata

For registries with less than 100k records, auto-completing a Lookup object is the most convenient way of finding a record.

For example, take the User registry:

# query the database for all users, optionally pass the field that creates the key
users = ln.User.lookup(field="handle")

# the lookup object is a NamedTuple
users
Hide code cell output
Lookup(testuser1=User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-07 12:11:22 UTC), dict=<bound method Lookup.dict of <lamin_utils._lookup.Lookup object at 0x7f723f4d28d0>>)

With auto-complete, we find a specific user record:

user = users.testuser1
user
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-07 12:11:22 UTC)

You can also get a dictionary:

users_dict = ln.User.lookup().dict()
users_dict
Hide code cell output
{'testuser1': User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-07 12:11:22 UTC)}

Query exactly one record

get errors if more than one matching records are found.

# by the universal base62 uid
ln.User.get("DzTjkKse")

# by any expression involving fields
ln.User.get(handle="testuser1")
Hide code cell output
User(uid='DzTjkKse', handle='testuser1', name='Test User1', created_at=2024-11-07 12:11:22 UTC)

Query sets of records

Filter for all artifacts created by a user:

ln.Artifact.filter(created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

To access the results encoded in a filter statement, execute its return value with one of:

  • .df(): A pandas DataFrame with each record in a row.

  • .all(): A QuerySet.

  • .one(): Exactly one record. Will raise an error if there is none. Is equivalent to the .get() method shown above.

  • .one_or_none(): Either one record or None if there is no query result.

Note

filter() returns a QuerySet.

The ORMs in LaminDB are Django Models and any Django query works. LaminDB extends Django’s API for data scientists.

Under the hood, any .filter() call translates into a SQL select statement.

.one() and .one_or_none() are two parts of LaminDB’s API that are borrowed from SQLAlchemy.

Search for records

Search the toy data:

ln.Artifact.search("iris").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1

Let us create 500 notebook objects with fake titles, save, and search them:

transforms = [ln.Transform(name=title, type="notebook") for title in ln.core.datasets.fake_bio_notebook_titles(n=500)]
ln.save(transforms)

# search
ln.Transform.search("intestine").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
10 zJaxG8ZPCAgH0000 None True Eccrine Sweat Gland intestine IgD IgD IgG1 Par... None None notebook None None None None None 2024-11-07 12:11:36.540301+00:00 1
17 VuKVeY5tj22E0000 None True Microglial Cell intestinal Bone marrow IgD Gra... None None notebook None None None None None 2024-11-07 12:11:36.540980+00:00 1
23 vWFLGWlrQOjE0000 None True Igg4 IgG1 Theca lutein cells IgG2 study Entero... None None notebook None None None None None 2024-11-07 12:11:36.541546+00:00 1
25 9L6kHal093tV0000 None True Stellate Cells investigate Foveolar cell intes... None None notebook None None None None None 2024-11-07 12:11:36.541735+00:00 1
39 5GCNfMeFZmjU0000 None True Research efficiency result IgG4 intestine IgG2. None None notebook None None None None None 2024-11-07 12:11:36.543053+00:00 1

Note

Currently, the LaminHub UI search is more powerful than the search of the lamindb open-source package.

Leverage relations

Django has a double-under-score syntax to filter based on related tables.

This syntax enables you to traverse several layers of relations and leverage different comparators.

ln.Artifact.filter(created_by__handle__startswith="testuse").df()  
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

The filter selects all artifacts based on the users who ran the generating notebook.

Under the hood, in the SQL database, it’s joining the artifact table with the run and the user table.

Comparators

You can qualify the type of comparison in a query by using a comparator.

Below follows a list of the most import, but Django supports about two dozen field comparators field__comparator=value.

and

ln.Artifact.filter(suffix=".jpg", created_by=user).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1

less than/ greater than

Or subset to artifacts smaller than 10kB. Here, we can’t use keyword arguments, but need an explicit where statement.

ln.Artifact.filter(created_by=user, size__lt=1e4).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

in

ln.Artifact.filter(suffix__in=[".jpg", ".fastq.gz"]).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

order by

ln.Artifact.filter().order_by("-updated_at").df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1

contains

ln.Transform.filter(name__contains="search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
19 mBDx61caDRBO0000 None True Research Bushy cells study IgG1 IgG4 Bushy cel... None None notebook None None None None None 2024-11-07 12:11:36.541169+00:00 1
28 Q7cDZttHX28u0000 None True Study IgM IgG2 Theca lutein cells research IgD. None None notebook None None None None None 2024-11-07 12:11:36.542019+00:00 1
38 zW3TlqWp3ira0000 None True Igd Regulatory T cell IgG4 investigate IgG eff... None None notebook None None None None None 2024-11-07 12:11:36.542959+00:00 1
39 5GCNfMeFZmjU0000 None True Research efficiency result IgG4 intestine IgG2. None None notebook None None None None None 2024-11-07 12:11:36.543053+00:00 1
40 PMHfX49FGQZf0000 None True Ureter IgG1 IgG2 research. None None notebook None None None None None 2024-11-07 12:11:36.543147+00:00 1

And case-insensitive:

ln.Transform.filter(name__icontains="Search").df().head(5)
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
19 mBDx61caDRBO0000 None True Research Bushy cells study IgG1 IgG4 Bushy cel... None None notebook None None None None None 2024-11-07 12:11:36.541169+00:00 1
28 Q7cDZttHX28u0000 None True Study IgM IgG2 Theca lutein cells research IgD. None None notebook None None None None None 2024-11-07 12:11:36.542019+00:00 1
38 zW3TlqWp3ira0000 None True Igd Regulatory T cell IgG4 investigate IgG eff... None None notebook None None None None None 2024-11-07 12:11:36.542959+00:00 1
39 5GCNfMeFZmjU0000 None True Research efficiency result IgG4 intestine IgG2. None None notebook None None None None None 2024-11-07 12:11:36.543053+00:00 1
40 PMHfX49FGQZf0000 None True Ureter IgG1 IgG2 research. None None notebook None None None None None 2024-11-07 12:11:36.543147+00:00 1

startswith

ln.Transform.filter(name__startswith="Research").df()
Hide code cell output
uid version is_latest name key description type source_code hash reference reference_type _source_code_artifact_id created_at created_by_id
id
19 mBDx61caDRBO0000 None True Research Bushy cells study IgG1 IgG4 Bushy cel... None None notebook None None None None None 2024-11-07 12:11:36.541169+00:00 1
39 5GCNfMeFZmjU0000 None True Research efficiency result IgG4 intestine IgG2. None None notebook None None None None None 2024-11-07 12:11:36.543053+00:00 1
58 V1Z4q8Y8TIW30000 None True Research IgG4 IgM. None None notebook None None None None None 2024-11-07 12:11:36.544856+00:00 1
111 EnpTmWmEUeML0000 None True Research research IgG2 IgG4 efficiency. None None notebook None None None None None 2024-11-07 12:11:36.554464+00:00 1
213 kXnq541V4Xi90000 None True Research IgG1 IgG4 IgG1 Teeth Stellate cells. None None notebook None None None None None 2024-11-07 12:11:36.570900+00:00 1
221 X9mrpTMO6NQQ0000 None True Research intestinal intestinal Teeth IgG. None None notebook None None None None None 2024-11-07 12:11:36.571628+00:00 1
232 gTi87cu6KSQL0000 None True Research IgG1 result IgG classify IgG2 IgG. None None notebook None None None None None 2024-11-07 12:11:36.572651+00:00 1
276 5iNSBLPAwpL80000 None True Research Bushy cells IgM IgE IgG4 IgG1 IgG1. None None notebook None None None None None 2024-11-07 12:11:36.580183+00:00 1
397 e4V0EDTp76pX0000 None True Research rank IgD IgG4 visualize. None None notebook None None None None None 2024-11-07 12:11:36.598500+00:00 1
416 SxkRdupRc8bY0000 None True Research investigate intestine Enterochromaffi... None None notebook None None None None None 2024-11-07 12:11:36.600282+00:00 1
475 X0L17BOQeKjE0000 None True Research IgD Granulosa cell IgG1 IgM intestinal. None None notebook None None None None None 2024-11-07 12:11:36.609329+00:00 1

or

ln.Artifact.filter(ln.Q(suffix=".jpg") | ln.Q(suffix=".fastq.gz")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
1 O8zfBIIbhchRz5xK0000 None True My image None .jpg None 29358 r4tnqmKI_SjrkdLzpuWp4g None None md5 None 1 True 1 None None 2024-11-07 12:11:27.010177+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

negate/ unequal

ln.Artifact.filter(~ln.Q(suffix=".jpg")).df()
Hide code cell output
uid version is_latest description key suffix type size hash n_objects n_observations _hash_type _accessor visibility _key_is_virtual storage_id transform_id run_id created_at created_by_id
id
2 7mI2SXO5hAK2Sxhw0000 None True The iris collection None .parquet dataset 5097 K1jn6pPlqIC6ebZQfW84NQ None None md5 DataFrame 1 True 1 None None 2024-11-07 12:11:27.308636+00:00 1
3 EMfURAucCrSnHvtV0000 None True My fastq None .fastq.gz None 20 hi7ZmAzz8sfMd3vIQr-57Q None None md5 None 1 True 1 None None 2024-11-07 12:11:27.319802+00:00 1

Clean up the test instance.

!rm -r ./test-registries
!lamin delete --force test-registries
Hide code cell output
• deleting instance testuser1/test-registries